Main
Strategic Applications of Named Reactions in Organic Synthesis
Strategic Applications of Named Reactions in Organic Synthesis
Laszlo Kurti, Barbara Czako
Kurti and Czako have produced an indispensable tool for specialists and non-specialists in organic chemistry. This innovative reference work includes 250 organic reactions and their strategic use in the synthesis of complex natural and unnatural products. Reactions are thoroughly discussed in a convenient, two-page layout-using full color. Its comprehensive coverage, superb organization, quality of presentation, and wealth of references, make this a necessity for every organic chemist.* The first reference work on named reactions to present colored schemes for easier understanding* 250 frequently used named reactions are presented in a convenient two-page layout with numerous examples* An opening list of abbreviations includes both structures and chemical names* Contains more than 10,000 references grouped by seminal papers, reviews, modifications, and theoretical works* Appendices list reactions in order of discovery, group by contemporary usage, and provide additional study tools* Extensive index quickly locates information using words found in text and drawings
Categories:
Chemistry\\Organic Chemistry
Year:
2005
Edition:
1
Publisher:
Academic Press
Language:
english
Pages:
810
ISBN 10:
0124297854
File:
PDF, 25.19 MB
Download (pdf, 25.19 MB)
Preview
- Checking other formats...
The file will be sent to your email address. It may take up to 1-5 minutes before you receive it.
The file will be sent to your Kindle account. It may takes up to 1-5 minutes before you received it.
Please note you need to add our NEW email km@bookmail.org to approved e-mail addresses. Read more.
Please note you need to add our NEW email km@bookmail.org to approved e-mail addresses. Read more.
You may be interested in
Most frequently terms
chem4603
synthesis3967
rearrangement2169
org1730
soc1628
alkyl1141
tetrahedron1129
asymmetric1060
equiv981
lett981
catalyzed977
oxidation961
aryl952
compounds949
substituted898
coupling831
ketones777
synthetic710
ome694
carbon666
ester663
organic656
aromatic627
acids627
ketone613
aldehydes605
ch3592
carbonyl591
chiral575
allylic541
derivatives508
alcohols500
esters496
solvent489
chemistry485
thf482
catalytic478
condensation475
methyl473
intermediate452
catalyst451
unsaturated436
halides435
amino432
amine414
cyclization402
cyclic399
complexes390
aldehyde387
carboxylic377
aldol377
electron364
meo354
alkene350
wittig350
alkenes343
aayush
Write a Review good book 4 study of name reactin and problems
03 June 2016 (01:42)
pimmel
laszlo in münster junge
26 April 2017 (12:31)
EthaNol
Almost as great as a tandem bike
25 May 2018 (11:50)
You can write a book review and share your experiences. Other readers will always be interested in your opinion of the books you've read. Whether you've loved the book or not, if you give your honest and detailed thoughts then people will find new books that are right for them.
1
|
2
|
TABLE OF CONTENTS SEARCH TEXT Strategic Applications of Named Reactions in Organic Synthesis pr o vi d ed by w jsw ift & Y iL ua n MAIN MENU TABLE OF CONTENTS SEARCH TEXT ii TABLE OF CONTENTS SEARCH TEXT Strategic Applications of Named Reactions in Organic Synthesis Background and Detailed Mechanisms by László Kürti and Barbara Czakó UNIVERSITY OF PENNSYLVANIA 250 Named Reactions AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO iii TABLE OF CONTENTS SEARCH TEXT Senior Publishing Editor Jeremy Hayhurst Project Manager Carl M. Soares Editorial Assistant Desiree Marr Marketing Manager Linda Beattie Cover Printer RR Donnelley Interior Printer RR Donnelley Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright © 2005, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Application Submitted British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN: 0-12-429785-4 For all information on all Elsevier Academic Press Publications visit our Web site at www.books.elsevier.com Printed in the United States of America 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1 iv TABLE OF CONTENTS SEARCH TEXT This book is dedicated to Professor Madeleine M. Joullié for her lifelong commitment to mentoring graduate students v TABLE OF CONTENTS SEARCH TEXT vi TABLE OF CONTENTS SEARCH TEXT ABOUT THE AUTHORS Barbara Czakó was born and raised in Hungary. She received her Diploma from Lajos Kossuth University in Debrecen, Hungary (now University of Debrecen). She obtained her Master of Science degree at University of Missouri-Columbia. Currently she is pursuing her Ph.D. degree in synthetic organic chemistry under the supervision of Professor Gary A. Molander at the University of Pennsylvania. László Kürti was born and raised in Hungary. He received his Diploma from Lajos Kossuth University in Debrecen, Hungary (now University of Debrecen). He obtained his Master of Science degree at University of Missouri-Columbia. Currently he is pursuing his Ph.D. degree in synthetic organic chemistry under the supervision of Professor Amos B. Smith III at the University of Pennsylvania. vii TABLE OF CONTENTS SEARCH TEXT ACKNOWLEDGEMENTS The road that led to the completion of this book was difficult, however, we enjoyed the support of many wonderful people who guided and helped us along the way. The most influential person was Professor Madeleine M. Joullié whose insight, honest criticism and invaluable suggestions helped to mold the manuscript into its current form. When we completed half of the manuscript in early 2004, Professor Amos B. Smith III was teaching his synthesis class "Strategies and Tactics in Organic Synthesis" and adopted the manuscript. We would like to thank him for his support and encouragement. We also thank the students in his class for their useful observations that aided the design of a number of difficult schemes. Our thanks also go to Professor Gary A. Molander for his valuable remarks regarding the organometallic reactions. He had several excellent suggestions on which named reactions to include. Earlier this year our publisher, Academic Press/Elsevier Science, sent the manuscript to a number of research groups in the US as well as in the UK. The thorough review conducted by the professors and in some cases also by volunteer graduate students is greatly appreciated. They are (in alphabetical order): Professor Donald H. Aue (University of California Santa Barbara) Professor Ian Fleming (University of Cambridge, UK) Professor Rainer Glaser (University of MissouriColumbia) Professor Michael Harmata (University of MissouriColumbia) Professor Robert A. W. Johnstone (University of Liverpool, UK) Professor Erik J. Sorensen (Princeton University) Professor P. A. Wender (Stanford University) and two of his graduate students Cindy Kan and John Kowalski Professor Peter Wipf (University of Pittsburgh) We would like to express our gratitude to the following friends/colleagues who have carefully read multiple versions of the manuscript and we thank them for the excellent remarks and helpful discussions. They were instrumental in making the manuscript as accurate and error free as possible: James P. Carey (Merck Research Laboratories) Akin H. Davulcu (Bristol-Myers Squibb/University of Pennsylvania) Dr. Mehmet Kahraman (Kalypsys, Inc.) Justin Ragains (University of Pennsylvania) Thomas Razler (University of Pennsylvania) There were several other friends/colleagues who reviewed certain parts of the manuscript or earlier versions and gave us valuable feedback on the content as well as in the design of the schemes. Clay Bennett (University of Pennsylvania) Prof. Cheon-Gyu Cho (Hanyang University, Korea/University of Pennsylvania) Dr. Shane Foister (University of Pennsylvania) Dr. Eugen Mesaros (University of Pennsylvania) Dr. Emmanuel Meyer (University of Pennsylvania) David J. St. Jean, Jr. (University of Pennsylvania) Dr. Kirsten Zeitler (University of Regensburg, Germany) Finally, we would like to thank our editor at Elsevier, Jeremy Hayhurst, who gave us the chance to make a contribution to the education of graduate students in the field of organic chemistry. He generously approved all of our requests for technical support thus helping us tremendously to finish the writing in a record amount of time. Our special thanks are extended to editorial assistants Desireé Marr and previously, Nora Donaghy, who helped conduct the reviews and made sure that we did not get lost in a maze of documents. viii TABLE OF CONTENTS MAIN MENU SEARCH TEXT CONTENTS I. Foreword by E.J. Corey.................................................................................................... x II. Introduction by K.C. Nicolaou ......................................................................................... xi III. Preface ............................................................................................................................xii IV. Explanation of the Use of Colors in the Schemes and Text ..........................................xiv V. List of Abbreviations ..................................................................................................xvii VI. List of Named Organic Reactions................................................................................xlv VII. Named Organic Reactions in Alphabetical Order ........................................................ 1 VIII. Appendix: Listing of the Named Reactions by Synthetic Type and by their Utility...... 502 8.1 Brief explanation of the organization of this section.............................................. 502 8.2 List of named reactions in chronological order of their discovery.......................... 503 8.3 Reaction categories – Categorization of named reactions in tabular format......... 508 8.4 Affected functional groups – Listing of transformations in tabular format.............. 518 8.5 Preparation of functional groups – Listing of transformations in tabular format .... 526 IX. References................................................................................................................... 531 X. Index............................................................................................................................. 715 MAIN MENU TABLE OF CONTENTS SEARCH TEXT FOREWORD This book on "Strategic Applications of Named Reactions in Organic Synthesis" is destined to become unusually useful, valuable, and influential for advanced students and researchers in the field. It breaks new ground in many ways and sets an admirable standard for the next generation of texts and reference works. Its virtues are so numerous there is a problem in deciding where to begin. My first impression upon opening the book was that the appearance of its pages is uniformly elegant and pleasing – from the formula graphics, to the print, to the layout, and to the logical organization and format. The authors employ four-color graphics in a thoughtful and effective way. All the chemical formulas are exquisitely drawn. The book covers many varied and useful reactions for the synthesis of complex molecules, and in a remarkably clear, authoritative and balanced way, considering that only two pages are allocated for each. This is done with unusual rigor and attention to detail. Packed within each two-page section are historical background, a concise exposition of reaction mechanism and salient and/or recent applications. The context of each example is made crystal clear by the inclusion of the structure of the final synthetic target. The referencing is eclectic but extensive and up to date; important reviews are included. The amount of information that is important for chemists working at the frontiers of synthesis to know is truly enormous, and also constantly growing. For a young chemist in this field, there is so much to learn that the subject is at the very least daunting. It would be well neigh impossible were it not for the efforts of countless authors of textbooks and reviews. This book represents a very efficient and attractive way forward and a model for future authors. If I were a student of synthetic chemistry, I would read this volume section by section and keep it close at hand for reference and further study. I extend congratulations to László Kürti and Barbara Czakó for a truly fine accomplishment and a massive amount of work that made it possible. The scholarship and care that they brought to this task will be widely appreciated because they leap out of each page. I hope that this wonderful team will consider extending their joint venture to other regions of synthetic chemical space. Job well done! E. J. Corey January, 2005 x TABLE OF CONTENTS SEARCH TEXT INTRODUCTION The field of chemical synthesis continues to amaze with its growing and impressive power to construct increasingly complex and diverse molecular architectures. Being the precise science that it is, this discipline often extends not only into the realms of technology, but also into the domains of the fine arts, for it engenders unparallel potential for creativity and imagination in its practice. Enterprises in chemical synthesis encompass both the discovery and development of powerful reactions and the invention of synthetic strategies for the construction of defined target molecules, natural or designed, more or less complex. While studies in the former area –synthetic methodology– fuel and enable studies in the latter –target synthesis– the latter field offers a testing ground for the former. Blending the two areas provides for an exciting endeavor to contemplate, experience, and watch. The enduring art of total synthesis, in particular, affords the most stringent test of chemical reactions, old and new, named and unnamed, while its overall reach and efficiency provides a measure of its condition at any given time. The interplay of total synthesis and its tools, the chemical reactions, is a fascinating subject whether it is written, read, or practiced. This superb volume by László Kürti and Barbara Czakó demonstrates clearly the power and beauty of this blend of science and art. The authors have developed a standard two-page format for discussing each of their 250 selections whereby each named reaction is concisely introduced, mechanistically explained, and appropriately exemplified with highlights of constructions of natural products, key intermediates and other important molecules. These literature highlights are a real treasure trove of information and a joy to read, bringing each named reaction to life and conveying a strong sense of its utility and dynamism. The inclusion of an up-to-date reference listing offers a complete overview of each reaction at one’s fingertips. The vast wealth of information so effectively compiled in this colorful text will not only prove to be extraordinarily useful to students and practitioners of the art of chemical synthesis, but will also help facilitate the shaping of its future as it moves forward into ever higher levels of complexity, diversity and efficiency. The vitality of the enduring field of total synthesis exudes from this book, captivating the attention of the reader throughout. The authors are to be congratulated for the rich and lively style they developed and which they so effectively employed in their didactic and aesthetically pleasing presentations. The essence of the art and science of synthesis comes alive from the pages of this wonderful text, which should earn its rightful place in the synthetic chemist’s library and serve as an inspiration to today’s students to discover, invent and apply their own future named reactions. Our thanks are certainly due to László Kürti and Barbara Czakó for a splendid contribution to our science. K.C. Nicolaou January, 2005 xi TABLE OF CONTENTS SEARCH TEXT PREFACE Today’s organic chemist is faced with the challenge of navigating his or her way through the vast body of literature generated daily. Papers and review articles are full of scientific jargon involving the description of methods, reactions and processes defined by the names of the inventors or by a well-accepted phrase. The use of so-called “named reactions” plays an important role in organic chemistry. Recognizing these named reactions and understanding their scientific content is essential for graduate students and practicing organic chemists. This book includes some of the most frequently used named reactions in organic synthesis. The reactions were chosen on the basis of importance and utility in synthetic organic chemistry. Our goal is to provide the reader with an introduction that includes a detailed mechanism to a given reaction, and to present its use in recent synthetic examples. This manuscript is not a textbook in the classical sense: it does not include exercises or chapter summaries. However, by describing 250 named organic reactions and methods with an extensive list of leading references, the book is well-suited for independent or classroom study. On one hand, the compiled information for these indispensable reactions can be used for finding important articles or reviews on a given subject. On the other hand, it can also serve as supplementary material for the study of organic reaction mechanisms and synthesis. This book places great emphasis on the presentation of the material. Drawings are presented accurately and with uniformity. Reactions are listed alphabetically and each named reaction is presented in a convenient two-page layout. On the first page, a brief introduction summarizes the use and importance of the reaction, including references to original literature and to all major reviews published after the primary reference. When applicable, leading references to modifications and theoretical studies are also given. The introduction is followed by a general scheme of the reaction and by a detailed mechanism drawn using a four-color code (red, blue, green and black) to ensure easy understanding. The mechanisms always reflect the latest evidence available for the given reaction. If the mechanism is unknown or debatable, references to the relevant studies are included. The second page contains 3 or 4 recent synthetic examples utilizing the pertinent named reaction. In most cases the examples are taken from a synthetic sequence leading to the total synthesis of an important molecule or a natural product. Some examples are taken from articles describing novel methodologies. The synthetic sequences are drawn using the four-color code, and the procedures are described briefly in 2-3 sentences. If a particular named reaction involves a complex rearrangement or the formation of a polycyclic ring system, numbering of the carbon-skeleton is included in addition to the four-color code. In the depicted examples, the reaction conditions as well as the ratio of observed isomers (if any) and the reported yields are shown. The target of xii TABLE OF CONTENTS SEARCH TEXT the particular synthetic effort is also illustrated with colors indicating where the intermediates reside in the final product. The approach used in this book is also unique in that it emphasizes the clever use of many reactions that might otherwise have been overlooked. The almost 10,000 references are indexed at the end of the book and include the title of the cited book, book section, chapter, journal or review article. The titles of seminal papers written in a foreign language were translated to English. The name of the author of a specific synthetic example was chosen as the one having an asterisk in the reference. In order to make the book as user-friendly as possible, we have included a comprehensive list of abbreviations used in the text or drawings along with the structure of the protecting groups and reagents. Also in an appendix, the named organic reactions are grouped on the basis of their use in contemporary synthesis. Thus the reader can readily ascertain which named organic reactions effect the same synthetic transformations or which functional groups are affected by the use of a particular named reaction. Finally, an index is provided to allow rapid access to desired information based on keywords found in the text or the drawings. László Kürti & Barbara Czakó University of Pennsylvania Philadelphia, PA January 2005 xiii TABLE OF CONTENTS SEARCH TEXT IV. EXPLANATION OF THE USE OF COLORS IN THE SCHEMES AND TEXT The book uses four colors (black, red, blue, and green) to depict the synthetic and mechanistic schemes and highlight certain parts of the text. In the “Introduction” and “Mechanism” sections of the text, the title named reaction/process is highlighted in blue and typed in italics: “The preparation of ketones via the C-alkylation of esters of 3-oxobutanoic acid (acetoacetic esters) is called the acetoacetic ester synthesis. Acetoacetic esters can be deprotonated at either the C2 or at both the C2 and C4 carbons, depending on the amount of base used.” All other named reactions/processes that are mentioned are typed in italics: “Dilute acid hydrolyzes the ester group, and the resulting β-keto acid undergoes decarboxylation to give a ketone (mono- or disubstituted acetone derivative), while aqueous base induces a retro-Claisen reaction to afford acids after protonation.” In the “Synthetic Applications” section, the name of the target molecule is highlighted in blue: “During the highly stereoselective total synthesis of epothilone B by J.D. White and co-workers, the stereochemistry of the alcohol portion of the macrolactone was established by applying Davis’s oxaziridine oxidation of a sodium enolate.” In the schemes, colors are applied to highlight the changes in a given molecule or intermediate (formation and breaking of bonds). It is important to note that due to the immense diversity of reactions, it is impossible to implement a strictly unified use of colors. Therefore, each scheme has a unique use of colors specifically addressing the given transformation. By utilizing four different colors the authors’ goal is to facilitate understanding. The authors hope that the readers will look up the cited articles and examine the details of a given synthesis. The following sample schemes should help the readers to understand how colors are used in this book. • In most (but not all) schemes the starting molecule is colored blue, while the reagent or the reaction partner may be of any of the remaining two colors (red and green). The newly formed bonds are always black. new bond BnO BnO O Zn-Cu, Et2O, 0 °C BnO Cl O Cl3CCOCl Cl BnO O OBn OBn new bond • The general schemes follow the same principle of coloring, and where applicable the same type of key reagents are depicted using the same color. (In this example the two different metal-derived reagents are colored green.) Simmons & Smith (1958): R2 R2 CH2 Zn-Cu R1 (Z)-1,2-disubstituted alkene CH2I2 / ether R1 R R 1 R4 R3 substituted alkene non-coordinating solvent CH2I2 / ether CH2 R1 1,2-trans-Disubstituted cyclopropane Charette asymmetric modification (1994): R5 H Et2Zn / R5CHI2 Zn-Cu R1 (E)-1,2-disubstituted alkene 1,2-cis-Disubstituted cyclopropane Furukawa modification (1966): 2 R2 R2 R2 C R6 HO R1 R1 R4 R3 Substituted cyclopropane R2 + R3 O R6 B Et2Zn R5CHI2 O DME/DCM Bu allylic alcohol dioxaborolane R5 H R1 C OH R2 R3 Optically active cyclopropane R1-4 = H, substituted alkyl and aryl; R5 = H, Me, phenyl; R6 = CONMe2; non-coordinating solvent: toluene, benzene, DCM, DCE xiv TABLE OF CONTENTS • SEARCH TEXT The mechanistic schemes benefit the most from the use of four colors. These schemes also include extensive arrow-pushing. The following two schemes demonstrate this point very well. • The catalytic cycle for the Suzuki cross-coupling: LnPd(0) R1 R 2 R2 X reductive elimination oxidative addition R1 B(R)2 L L(n-1)Pd(II) M+(-OR) base + organoborane R1 X LnPd(II) R2 R2 OR 1 R B(R)2 M+(-OR) borate transmetallation metathesis L + RO B(R)2 OR LnPd(II) • M+(-X) OR R2 The mechanism of the Swern oxidation: Activation of DMSO with TFAA: O F 3C O O O CF3 F3C CH3 H 3C S O S CF3 O O < -30 °C O S CH3 O CH3 R F 3C 2 HO CH3 O O R1 S CH3 - CF3COOH R1 O H H 3C Activation of DMSO with oxalyl chloride: O H 3C H 3C S H 3C Activation of the alcohol: CH3 Cl S HO CH3 chlorosulfonium salt F 3C S CH2 O O side product H NEt3 H 3C R1 S CH2 R1 O R2 alkoxysulfonium ylide R2 alkoxysulfonium salt O CH3 - Cl O H 3C S O Cl R1 H S CH2 O R CH3 S CH3 R H 3C - HCl R1 O S S H2 C NEt3 H R2 1 xv S C H2 H O + C + R2 R1 Ketone or Aldehyde CO O H3C S O R1 O H 3C + CH3 chlorosulfonium salt R2 H 2 Cl O R2 O CH3 Cl O CH3 H 3C Formation of the product: Cl Cl S O Pummerer rearrangement S O Cl O H2 C O R2 Cl H 3C trifluoroacetoxydimethylsulfonium trifluoroacetate Activation of the alcohol: F 3C > -30 °C CF3 O CH3 CH3 CH3 CF3CO2 H 3C S O O CH2 R1 R2 alkoxysulfonium ylide TABLE OF CONTENTS • SEARCH TEXT In the case of complex rearrangements, numbering of the initial carbon skeleton has been applied in addition to the colors to facilitate understanding. Again, the newly formed bonds are black. OH 5 4 OK KH, 18-crown-6 3 6 HN 2 6 THF, r.t. 1 4 5 N2 N2 2-aza-Cope 1 OK 5 6 4 3 H 1 CN • [3,3] 3 In most instances, the product of a given named reaction/process will be part of a larger structure (e.g., natural product) at the end of the described synthetic effort. For pedagogical reasons, the authors decided to indicate where the building block appears in the target structure. It is the authors’ hope that the reader will be able to put the named reaction/process in context and the provided synthetic example will not be just an abstract one. OTHP OTHP 1. NaHMDS, THF, -78 °C N Bn O O • PhO2S steps OH O 2. O N Ph 3. CSA, THF, -78 °C 71% for 3 steps O N O O O S Bn OH N O O OH Epothilone B O The references at the end of the book are listed in alphabetical order, and the named reaction for which the references are listed is typed in blue and with boldface (see Dakin oxidation). Important: the references are listed in chronological order when they appear as superscript numbers in the text (e.g., reference 10 is a more recent paper than reference 12, but it received a smaller reference number because it was cited in the text earlier). Mechanism: 12,10,15-17 The mechanism of the Dakin oxidation is very similar to the mechanism of the Baeyer-Villiger oxidation. • For the Dakin oxidation example, the references at the end of the book will be printed in the order they have been cited, but within a group of references (e.g., 15-17) they appear in chronological order. Dakin oxidation 10. Hocking, M. B. Dakin oxidation of o-hydroxyacetophenone and some benzophenones. Rate enhancement and mechanistic aspects. Can. J. Chem. 1973, 51, 2384-2392. 11. Matsumoto, M., Kobayashi, K., Hotta, Y. Acid-catalyzed oxidation of benzaldehydes to phenols by hydrogen peroxide. J. Org. Chem. 1984, 49, 4740-4741. 12. Ogata, Y., Sawaki, Y. Kinetics of the Baeyer-Villiger reaction of benzaldehydes with perbenzoic acid in aquo-organic solvents. J. Org. Chem. 1969, 34, 3985-3991. 13. Boeseken, J., Coden, W. D., Kip, C. J. The synthesis of sesamol and of its β-glucoside. The Baudouin reaction. Rec. trav. chim. 1936, 55, 815-820. 14. Kabalka, G. W., Reddy, N. K., Narayana, C. Sodium percarbonate: a convenient reagent for the Dakin reaction. Tetrahedron Lett. 1992, 33, 865-866. 15. Hocking, M. B., Ong, J. H. Kinetic studies of Dakin oxidation of o- and p-hydroxyacetophenones. Can. J. Chem. 1977, 55, 102-110. 16. Hocking, M. B., Ko, M., Smyth, T. A. Detection of intermediates and isolation of hydroquinone monoacetate in the Dakin oxidation of phydroxyacetophenone. Can. J. Chem. 1978, 56, 2646-2649. 17. Hocking, M. B., Bhandari, K., Shell, B., Smyth, T. A. Steric and pH effects on the rate of Dakin oxidation of acylphenols. J. Org. Chem. 1982, 47, 4208-4215. xvi TABLE OF CONTENTS SEARCH TEXT V. LIST OF ABBREVIATIONS Abbreviation Chemical Name Chemical Structure O O O 18-Cr-6 18-crown-6 O O O O Ac acetyl acac acetylacetonyl AA AD asymmetric aminohydroxylation asymmetric dihydroxylation ad adamantyl O O NA NA O N ADDP N N 1,1'-(azodicarbonyl)dipiperidine N O ADMET NA acyclic diene metathesis polymerization O acaen N N,N’-bis(1-methyl-3-oxobutylidene)ethylenediamine N O AIBN 2,2'-azo bisisobutyronitrile Alloc allyloxycarbonyl O Am amyl (n-pentyl) An p-anisyl ANRORC aq anionic ring-opening ring-closing aqueous O NA NA O AQN anthraquinone O Ar aryl (substituted aromatic ring) xvii N N N N NA O TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure ATD aluminum tris(2,6-di-tert-butyl-4-methylphenoxide) atm 1 atmosphere = 10 Pa (pressure) O Al 3 5 NA Ph ATPH aluminum tris(2,6-diphenylphenoxide) Al O Ph BBN (9-BBN) 9-borabicyclo[3.3.1]nonane (9-BBN) B H B BCME 9-borabicyclo[3.3.1]nonyl bis(chloromethyl)ether 3 B Cl O Cl O BCN BDPP N-benzyloxycarbonyloxy-5-norbornene-2,3dicarboximide (2R, 4R) or (2S, 4S) bis(diphenylphosphino)pentane N O O O O Ph2P PPh2 (R) (R) BER NA borohydride exchange resin OH BHT 2,6-di-t-butyl-p-cresol (butylated hydroxytoluene) BICP 2(R)-2’(R)-bis(dipenylphosphino)-1(R),1’(R)dicyclopentane BINAL-H BINAP 2,2'-dihydroxy-1,1'-binaphthyl lithium aluminum hydride 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (R) (R) (R) (R) Ph2P PPh2 O O H Al Li H PPh2 PPh2 xviii TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name BINOL 1,1'-bi-2,2'-naphthol Chemical Structure OH OH O S Bip biphenyl-4-sulfonyl bipy 2,2'-bipyridyl BLA Brönsted acid assisted chiral Lewis acid bmin 1-butyl-3-methylimidazolium cation BMS Borane-dimethyl sulfide complex Bn benzyl O N N NA N N H3B SMe2 O BNAH 1-benzyl-1,4-dihydronicotinamide BOB 4-benzyloxybutyryl Boc t-butoxycarbonyl N NH2 O O O O O BOM benzyloxymethyl BOP-Cl bis(2-oxo-3-oxazolidinyl)phosphinic chloride O O Cl O P N N O O NA bp boiling point BPD bis(pinacolato)diboron O O B B O O O O O BPO benzoyl peroxide BPS (TBDPS) t-butyldiphenylsilyl O Ph Si xix Ph TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name BQ benzoquinone Chemical Structure O O O Bs brosyl = (4-bromobenzenesulfonyl) BSA N,O-bis(trimethylsilyl)acetamide BSA Bovine serum albumin Bt 1- or 2-benzotriazolyl S Br O O Si Si N NA N N N F BTAF benzyltrimethylammonium fluoride BTEA benzyltriethylammonium BTEAC benzyltriethylammonium chloride BTFP 3-bromo-1,1,1-trifluoro-propan-2-one N N Cl N F O F F Br BTMA benzyltrimethylammonium N BTMSA bis(trimethylsilyl) acetylene Si Si O BTS bis(trimethylsilyl) sulfate Si O benzothiazole 2-sulfonic acid BTSP bis(trimethylsilyl) peroxide Bz benzoyl Bu ( Bu) n n-butyl c cyclo S HO S N O Si O O O NA xx Si O O BTSA O S Si TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure ca NA CA circa (approximately) chloroacetyl CAN cerium(IV) ammonium nitrate (cericammonium nitrate) Ce(NH4)2(NO3)6 cat. catalytic NA CB catecholborane O Cl O HB O H Ph CBS Corey-Bakshi-Shibata reagent N B Ph R = H, alkyl O R Cbz (Z) O benzyloxycarbonyl O cc. or conc. CCE NA concentrated constant current electrolysis NA O CDI carbonyl diimidazole CHD 1,3 or 1,4-cyclohexadiene N N N 1,3-CHD N 1,4-CHD Ph CHIRAPHOS 2,3-bis(diphenylphosphino)butane Ph (S) P (S) P Ph Ph Chx (Cy) cyclohexyl Cl CIP 2-chloro-1,3-dimethylimidazolidinium hexafluorophosphate CM (XMET) cross metathesis CMMP cyanomethylenetrimethyl phosphorane COD 1,5-cyclooctadiene COT 1,3,5-cyclooctatriene Cp cyclopentadienyl N NH PF6 NA P N O S O CPTS collidinium-p-toluenesulfonate xxi O H N TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure CRA complex reducing agent NA Cr-PILC chromium-pillared clay catalyst NA CSA camphorsufonic acid O CSI SO3H O chlorosulfonyl isocyanate CTAB cetyl trimethylammonium bromide CTACl cetyl trimethylammonium chloride N S Cl C O O N N Cl C15H31 CTAP N cetyl trimethylammonium permanganate MnO4 C15H31 Δ d heat days (length of reaction time) DABCO 1,4-diazabicyclo[2.2.2]octane NA NA N N N N F DAST diethylaminosulfur trifluoride F S N F DATMP diethylaluminum 2,2,6,6-tetramethylpiperidide N AlEt2 Ph DBA (dba) dibenzylideneacetone Ph O O DBAD N di-tert-butylazodicarboxylate O O N O O Br N DBI dibromoisocyanuric acid O NH N Br xxii O Br TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O DBM O dibenzoylmethane 9 DBN 1 1,5-diazabicyclo[4.3.0]non-5-ene 6 N 4 5 dibenzosuberyl 11 DBU 3 8 7 DBS 2 N 1,8-diazabicyclo[5.4.0]undec-7-ene 1 2 3 N 10 9 N 4 7 5 6 8 CN DCA 9,10-dicyanoanthracene CN Cl DCB 1,2-dichlorobenzene DCC dicyclohexylcarbodiimide DCE 1,1-dichloroethane Cl N C N Cl Cl DCM CH2Cl2 dichloromethane CN DCN 1,4-dicyanonaphthalene CN Dcpm dicyclopropylmethyl DCU N,N’-dicyclohexylurea O N H N H O NC DDQ Cl 2,3-dichloro-5,6-dicyano-1,4-benzoquinone NC Cl O de diastereomeric excess xxiii NA TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O DEAD diethyl azodicarboxylate O N N O O DEIPS diethylisopropylsilyl DEPBT 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin4(3H)-one Si N O O DET O OEt O N P EtO OH O (R) diethyl tartrate N (R) O HO DHP O 3,4-dihydro-2H-pyran O OMe DHQ H dihydroquinine OH N N H Et Et N (DHQ)2PHAL H bis(dihydroquinino)phthalazine H N N N O O H H MeO OMe N N OMe DHQD dihydroquinidine H N OH H N Et Et N H (DHQD)2PHAL bis(dihydroquinidino)phthalazine H N N N O O H OMe N N O DIAD diisopropyl azodicarboxylate N O O N O O DIB (BAIB or PIDA) (diacetoxyiodo)benzene O O I O xxiv H MeO TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name DIBAL (DIBAH) DIBAL-H diisobutylaluminum hydride DIC diisopropyl carbodiimide diop Chemical Structure H Al N 4,5-bis-[(diphenylphosphanyl)methyl]-2,2-dimethyl[1,3]dioxolane C N O (R) PPh2 O (R) PPh2 O DIPAMP P 1,2-bis(o-anisylphenylphosphino)ethane P O DIPEA (Hünig's base) diisopropylethylamine N O DIPT diisopropyl tartrate O OH (R) (R) HO O O O DLP C10H21 dilauroyl peroxide O O C10H21 O O DMA (DMAC) N,N-dimethylacetamide DMAD dimethyl acetylene dicarboxylate DMAP N,N-4-dimethylaminopyridine DMB m-dimethoxybenzene N O O O O N N O DMDO dimethyl dioxirane O O O DME 1,2-dimethoxyethane xxv O O TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure DMF N,N-dimethylformamide O N H O DMI 1,3-dimethylimidazolidin-2-one N N O DMP Dess-Martin periodinane O I OAc AcO OAc DMPS Si dimethylphenylsilyl N 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone DMPU N (N,N-dimethyl propylene urea) DMTSF dimethyl(methylthio)sulfonium tetrafluoroborate S Me O Me S BF4 Me DMS dimethylsulfide DMSO dimethylsulfoxide DMT 4,4’-dimethoxytrityl S O S O O O DMTMM 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4methylmorpholinium chloride N O N N N O Cl DMTr 4,4’-dimethyltrityl DMTST (dimethylthio)methylsulfonium trifluoromethanesulfonate S DNA deoxyribonucleic acid xxvi S O F O S S O F NA F TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name DPA (DIPA) diisopropylamine Chemical Structure N H DPBP 2,2'-bis(diphenylphosphino)biphenyl (S) Ph2P PPh2 O DPDC diisopropyl peroxydicarbonate O O O O O NN+ DPDM diphenyl diazomethane H2N DPEDA NH2 (R) (R) 1,2-diamino-1,2-diphenylethane Ph DPIBF diphenylisobenzofuran O Ph DPPA diphenylphosphoryl azide (diphenylphosphorazidate) O O Dppb (ddpb) 1,4-bis(diphenylphosphino)butane P O N N+ N- Ph2P PPh2 dppe 1,2-bis(diphenylphosphino)ethane dppf 1,1'-bis(diphenylphosphino)ferrocene PPh2 Ph2P PPh2 Fe PPh2 dppm bis(diphenylphosphino)methane dppp 1,3-bis(diphenylphosphino)propane DPS (also TBDPS or BPS) t-butyldiphenylsilyl Ph2P PPh2 Ph2P PPh2 Si xxvii TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name DPTC O,O’-di(2’-pyridyl)thiocarbonate dr diastereomeric ratio DTBAD (DBAD) di-tert-butyl azodicarboxylate Chemical Structure S N O O N NA O N O O N O DTBB 4,4’-di-tert-butylbiphenyl DTBP 2,6-di-tert-butylpyridine DTBMP 2,6-di-tert-butyl-4-methylpyridine N N OH DTE 1,4-dithioerythritol SH SH DVS OH Me 1,3-divinyl-1,1,3,3-tetramethyldisiloxane O Si Me + E E2 ED electrophile (denotes any electrophile in general) bimolecular elimination effective dosage EDA ethyl diazoacetate Me Si Me NA NA NA O N+ O EDDA ethylenediamine diacetate OAc NH3 H3N OAc EDC (EDAC) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (ethyldimethylaminopropylcarbodiimide) N EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride N C C N- N N N NH Cl PO3H2 EDCP 2,3-bis-phosphonopentanedioic acid (ethylene dicarboxylic 2,3-diphosphonic acid) EDG electron-donating group EDTA ethylenediamine tetraacetic acid HOOC COOH PO3H2 NA HOOC HOOC N N COOH xxviii COOH TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure ee enantiomeric excess ethoxyethyl NA O EE NA Ei intramolecular syn elimination en ethylenediamine EOM ethoxymethyl O ESR electron spin resonance (spectroscopy) NA Et ethyl ETSA ethyl trimethylsilylacetate H2N NH2 O Si O EVE ethyl vinyl ether O EWG electron-withdrawing group NA Fc ferrocenyl Fe H2O3POH2C FDP fructose-1,6-diphosphate H O HO HO H OH CH2OPO3H2 H F FDPP pentafluorophenyl diphenylphosphinate F F O F Ph P O F Ph Fl fluorenyl FMO frontier molecular orbital (theory) NA O O Fmoc 9-fluorenylmethoxycarbonyl F F fod 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5octanedione F F F F O O F NA fp FSM flash point Mesoporous silica FTT 1-fluoro-2,4,6-trimethylpyridinium triflate NA O F N FO S O F xxix F TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure FVP GEBC h hν flash vacuum pyrolysis gel entrapped base catalyst hours (length of reaction time) irradiation with light NA NA NA NA PF6 HATU Het O-(7-azabenzotriazol-1-yl)-N,N,N’,N’tetramethyluronium hexafluorophosphate N O+ N N N N N NA heterocycle O hfacac hexafluoroacetylacetone F3 C CF3 F F F HFIP O 1,1,1,3,3,3-hexafluoro-2-propanol (hexafluoroisopropanol) F F F OH HO HGK 4-hydroxy-2-ketoglutarate O O O O Hgmm HLE millimeter of mercury (760 Hgmm = 1 atm = 760 Torr) horse liver esterase Hmb 2-hydroxy-4-methoxybenzyl HMDS 1,1,1,3,3,3-hexamethyldisilazane HMPA hexamethylphosphoric acid triamide (hexamethylphosphoramide) O NA NA O OH Si H N Si N N P N O N HMPT hexamethylphosphorous triamide N P N N HOAt N 1-hydroxy-7-azabenzotriazole N N OH N HOBt (HOBT) N 1-hydroxybenzotriazole N OH HOMO highest occupied molecular orbital HOSu N-hydroxysuccinimide HPLC HWE i high-pressure liquid chromatography Horner-Wadsworth-Emmons iso xxx NA OH O N NA NA NA O TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O IBA I 2-iodosobenzoic acid O HO O IBX o-iodoxybenzoic acid O I HO IDCP bis(2,4,6-collidine)iodonium perchlorate N O I+ N ClO4- HN Imid (Im) imidazole INOC intramolecular nitrile oxide cycloaddition IPA isopropyl alcohol Ipc isopinocamphenyl IR K-10 infrared spectroscopy a type of Montmorillonite clay KDA potassium diisopropylamide KHMDS potassium bis(trimethylsilyl)amide KSF L a type of Montmorillonite clay ligand L.R. Lawesson’s reagent (2,4-bis-(4-methoxyphenyl)[1,3,2,4]dithiadiphosphetane 2,4-dithion) N NA HO H NA NA K N K N Si Si NA NA S S P MeO OMe P S S NA LA LAB Lewis acid lithium amidotrihydroborate LAH lithium aluminum hydride LiAlH4 LD50 dose that is lethal to 50% of the test subjects (cells, animals, humans etc.) NA LDA lithium diisopropylamide LiH2NBH3 N LDBB lithium 4,4’-t-butylbiphenylide xxxi Li Li TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure LDE lithium diethylamide LDPE lithium perchlorate-diethyl etherate LHMDS (LiHMDS) lithium bis(trimethylsilyl)amide LICA lithium isopropylcyclohexylamide Li N LiClO4 - Et2O Li N Si Si N Li LICKOR (super base) liq. butyllithium-potassium tert-butoxide BuLi - KOt-Bu liquid NA LiTMP (LTMP) lithium 2,2,6,6-tetramethylpiperidide LPT lithium pyrrolidotrihydroborate (lithium pyrrolidide-borane) L-selectride lithium tri-sec-butylborohydride LTA lead tetraacetate Pb(OAc)4 LUMO lowest unoccupied molecular orbital NA lut 2,6-lutidine m meta MA maleic anhydride MAD Li N Li(CH 2)4NBH3 BH Li N NA O methyl aluminum bis(2,6-di-t-butyl-4methylphenoxide) O O O AlMe 2 MAT methyl aluminum bis(2,4,6-tri-t-butylphenoxide) O AlMe 2 xxxii TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure S MBT 2-mercaptobenzothiazole HS N COOOH m-CPBA meta chloroperbenzoic acid Cl CH3 Me methyl MEM (2-methoxyethoxy)methyl O O O MEPY methyl 2-pyrrolidone-5(S)-carboxylate Mes mesityl H N O O HO mesal N-methylsalicylaldimine N MIC methyl isocyanate O C N O O MMPP (MMPT) magnesium monoperoxyphthalate Mg2+ O O O O MOM methoxymethyl MoOPH mp MPa oxodiperoxomolybdenum(pyridine)(hexamethylphosphoric triamide) melting point 6 megapascal = 10 Pa = 10 atm (pressure) NA NA O MPD (NMP) N-methyl-2-pyrrolidinone MPM methoxy(phenylthio)methyl MPM (PMB) p-methoxybenzyl N O S O xxxiii TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure Cl MPPC NH O Cr O N-methyl piperidinium chlorochromate O O S CH3 Ms mesyl (methanesulfonyl) MS MS mass spectrometry molecular sieves NA MSA methanesulfonic acid HO S CH3 MSH o-mesitylenesulfonyl hydroxylamine O NA O O H N HO O S O O F MSTFA N-methyl-N-(trimethylsilyl) trifluoroacetamide Si N F F O MTAD O N-methyltriazolinedione N N N MTEE (MTBE) methyl t-butyl ether MTM methylthiomethyl MTO methyltrioxorhenium O S O O Re CH3 O Me Mtr Me O (4-methoxy-2,3,6-trimethylphenyl)sulfonyl S OMe O Me MVK methyl vinyl ketone O mw n NA microwave normal (e.g. unbranched alkyl chain) NA H O H NH2 N O O NH2 NADPH nicotinamide adenine dinucleotide phosphate OH OH O O P O P O OH OH N N N N O O OH O P OH OH xxxiv TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure Na NaHMDS sodium bis(trimethylsilyl)amide Naph (Np) naphthyl N Si Si O NBA N-bromoacetamide NBD (nbd) norbornadiene Br N H O NBS N-bromosuccinimide N Br O O NCS N Cl N-chlorosuccinimide O Nf nonafluorobutanesulfonyl O F F O F F S F F F F F O NHPI N-hydroxyphthalimide N OH O I N O NIS N-iodosuccinimide NMM N-methylmorpholine NMO N-methylmorpholine oxide O N O O N O O NMP N-methyl-2-pyrrolidinone NMR nuclear magnetic resonance NORPHOS bis(diphenylphosphino)bicyclo[2.2.1]-hept-5-ene N NA Ph2P PPh2 O Nos 4-nitrobenzenesulfonyl S O xxxv O N O TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O NPM N-phenylmaleimide N O NA NR no reaction Ns 2-nitrobenzenesulfonyl O O N O S O NSAID Nuc o non steroidal anti-inflammatory drug nucleophile (general) ortho NA Oxone potassium peroxymonosulfate KHSO5 p para NA NA NA R PAP R N R N P N 2,8,9-trialkyl-2,5,8,9-tetraaza1-phospha-bicyclo[3.3.3]undecane N PBP N pyridinium bromide perbromide Br3 H O PCC pyridinium chlorochromate PDC pyridinium dichromate PEG polyethylene glycol N H N H Cl O Cr O O O O Cr Cr O O O O NA Ph Pf 9-phenylfluorenyl pfb perfluorobutyrate F F Ph phenyl PHAL phthalazine F O F O F F F N N phen 9,10-phenanthroline N N xxxvi N H TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O C Phth phthaloyl C O pic 2-pyridinecarboxylate O O N O PIDA (BAIB or DIB) phenyliodonium diacetate O O I O O PIFA F3C phenyliodonium bis(trifluoroacetate) O O I O CF3 Piv pivaloyl PLE pig liver esterase PMB (MPM) p-methoxybenzyl PMP 4-methoxyphenyl PMP 1,2,2,6,6-pentamethylpiperidine O NA O O Me Me N Me Me Me PNB O p-nitrobenzyl N O O PNZ p-nitrobenzyloxycarbonyl O O N O PPA polyphosphoric acid PPI 2-phenyl-2-(2-pyridyl)-2H-imidazole NA N N N PPL pig pancreatic lipase PPO 4-(3-phenylpropyl)pyridine-N-oxide PPSE polyphosphoric acid trimethylsilyl ester xxxvii NA O N Ph NA TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O PPTS S O pyridinium p-toluenesulfonate Pr propyl psi pounds per square inch N H O NA N N PT 1-phenyl-1H-tetrazol-yl N N Ph NA P.T. proton transfer PTAB phenyltrimethylammonium perbromide PTC Phase transfer catalyst PTMSE (2-phenyl-2-trimethylsilyl)ethyl PTSA (or TsOH) p-toluenesulfonic acid PVP poly(4-vinylpyridine) Py (pyr) r.t. rac pyridine N Br3 NA Si HO3S CH3 NA N NA room temperature racemic NA NH2 N RAMP (R)-1-amino-2-(methoxymethyl)pyrrolidine RaNi Raney nickel NA RB RCAM RCM Rds (or RDS) Rose Bengal ring-closing alkyne metathesis ring-closing metathesis rate-determining step See Rose bengal Red-Al sodium bis(2-methoxyethoxy) aluminum hydride (R) O NA NA NA O O O O Al H H H O Me O O H O H Rham rhamnosyl Rf perfluoroalkyl group CnF2n+1 Rf retention factor in chromatography NA ROM ring-opening metathesis NA ROMP ring-opening metathesis polymerization NA xxxviii Na TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure I I O Rose Bengal (RB) 2,4,5,7-tetraiodo-3',4',5',6'-tetrachlorofluorescein disodium salt O O I I Cl 2 Na COO (a photosensitizer) Cl Cl Cl s seconds (length of reaction time) S,S,-chiraphos (S,S)-2,3-bis(diphenylphosphino)butane NA PPh2 (S) (S) PPh2 Salen N,N’-ethylenebis(salicylideneiminato) bis(salicylidene)ethylenediamine N N OH salophen N o-phenylenebis(salicylideneiminato) N OH SAMP (S)-1-amino-2-(methoxymethyl)pyrrolidine HO HO NH2 N O SC CO2 supercritical carbon-dioxide SDS sodium dodecylsulfate NA O Na O S O O NA sec secondary SEM 2-(trimethylsilyl)ethoxymethyl SES 2-[(trimethylsilyl)ethyl]sulfonyl Si O O Si S O SET single electron transfer Sia 1,2-dimethylpropyl (secondary isoamyl) SPB sodium perborate NA Na BO3 xxxix TABLE OF CONTENTS Abbreviation TADDOL SEARCH TEXT Chemical Name 1 Chemical Structure H 1 2,2-dimethyl-α,α,α , α -tetraaryl-1,3-dioxolane-4,5dimethanol O OH Ar Ar Ar (R) (R) O H Ar OH NEt2 TASF tris(diethylamino)sulfonium difluorotrimethylsilicate Et2N S SiMe3F2 NEt2 TBAB tetra-n-butylammonium bromide N Br TBAF tetra-n-butylammonium fluoride Bu4N F TBAI tetra-n-butylammonium iodide Bu4N I Br TBCO tetrabromocyclohexadienone Br O Br Br TBDMS (TBS) t-butyldimethylsilyl TBDPS (BPS) t-butyldiphenylsilyl TBH tert-butyl hypochlorite O TBHP tert-butyl hydroperoxide O TBP tributylphosphine Si Si Cl OH P N N TBT N N 1-tert-butyl-1H-tetrazol-5-yl t-Bu TBTH tributyltin hydride TBTSP t-butyl trimethylsilyl peroxide H Sn xl Si O O TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O TCCA trichloroisocyanuric acid Cl N Cl N O N O Cl S TCDI thiocarbonyl diimidazole N N N TCNE TCNQ N N N N N tetracyanoethylene NC CN NC CN 7,7,8,8-tetracyano-para-quinodimethane Si TDS dimethyl thexylsilyl TEA triethylamine TEBACl benzyl trimethylammonium chloride TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy free radical N Cl N N O• Teoc 2-(trimethylsilyl)ethoxycarbonyl O Si O O TEP triethylphosphite TES triethylsilyl P O O Si F trifluoromethanesulfonyl F TFA trifluoroacetic acid F Tfa trifluoroacetamide F Tf xli O S F O F OH F O F NH2 F O TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O O F TFAA TFE trifluoroacetic anhydride F O F F F F 2,2,2-trifluoroethanol OH F TFMSA trifluoromethanesulfonic acid (triflic acid) TFP tris(2-furyl)phosphine F F O F S OH F O O P O O S Th 2-thienyl thexyl 1,1,2-trimethylpropyl THF tetrahydrofuran THP 2-tetrahydropyranyl TIPB 1,3,5-triisopropylbenzene TIPS triisopropylsilyl TMAO (TMANO) trimethylamine N-oxide TMEDA N,N,N',N'-tetramethylethylenediamine TMG 1,1,3,3-tetramethylguanidine O O Si N+ O- N N N N NH TMGA tetramethylguanidinium azide N N NH2 N3 xlii F TABLE OF CONTENTS Abbreviation SEARCH TEXT Chemical Name Chemical Structure O Tmob 2,4,6-trimethoxybenzyl O O TMP 2,2,6,6-tetramethylpiperidine TMS trimethylsilyl TMSA trimethylsilyl azide TMSEE (trimethylsilyl)ethynyl ether N H Si Si N N+ N- Si Si O TMU N tetramethylurea N O - O - O N+ O O N+ O N+ O O O TNM tetranitromethane Tol p-tolyl tolbinap 2,2'-bis(di-p-tolylphosphino)-1,1'-binaphthyl + N 2 P P 2 O N TPAP tetra-n-propylammonium perruthenate TPP triphenylphosphine O Ru O O P Ph NH TPP 5,10,15,20-tetraphenylporphyrin N Ph Ph N HN Ph xliii TABLE OF CONTENTS SEARCH TEXT Abbreviation Chemical Name Chemical Structure TPS triphenylsilyl Si Tr trityl (triphenylmethyl) C Trisyl 2,4,6-triisopropylbenzenesulfonyl O S O Troc 2,2,2-trichloroethoxycarbonyl Cl Cl O Cl O TS transition state (or transition structure) Ts (Tos) p-toluenesulfonyl NA O S O TSE (TMSE) 2-(trimethylsilyl)ethyl TTBP 2,4,5-tri-tert-butylpyrimidine Si N N TTMSS tris(trimethylsilyl)silane Si Si SiH Si TTN thallium(III)-trinitrate Tl(NO3)3 UHP urea-hydrogen peroxide complex H2 N NH2 H2O2 O O Vitride (Red-Al) sodium bis(2-methoxyethoxy)aluminum hydride O O O Al H Na H wk weeks (length of reaction time) Z (Cbz) benzyloxycarbonyl NA O O xliv TABLE OF CONTENTS SEARCH TEXT VI. LIST OF NAMED ORGANIC REACTIONS Acetoacetic Ester Synthesis....................................................................................................................................2 Acyloin Condensation .............................................................................................................................................4 Alder (Ene) Reaction (Hydro-Allyl Addition) ............................................................................................................6 Aldol Reaction .........................................................................................................................................................8 Alkene (Olefin) Metathesis ....................................................................................................................................10 Alkyne Metathesis .................................................................................................................................................12 Amadori Reaction/Rearrangement........................................................................................................................14 Arbuzov Reaction (Michaelis-Arbuzov Reaction) ..................................................................................................16 Arndt-Eistert Homologation/Synthesis...................................................................................................................18 Aza-Claisen Rearrangement (3-Aza-Cope Rearrangement).................................................................................20 Aza-Cope Rearrangement ....................................................................................................................................22 Aza-Wittig Reaction...............................................................................................................................................24 Aza-[2,3]-Wittig Rearrangement............................................................................................................................26 Baeyer-Villiger Oxidation/Rearrangement .............................................................................................................28 Baker-Venkataraman Rearrangement ..................................................................................................................30 Baldwin’s Rules/Guidelines for Ring-Closing Reactions .......................................................................................32 Balz-Schiemann Reaction (Schiemann Reaction).................................................................................................34 Bamford-Stevens-Shapiro Olefination...................................................................................................................36 Barbier Coupling Reaction ....................................................................................................................................38 Bartoli Indole synthesis .........................................................................................................................................40 Barton Nitrite Ester Reaction.................................................................................................................................42 Barton Radical Decarboxylation Reaction.............................................................................................................44 Barton-McCombie Radical Deoxygenation Reaction ............................................................................................46 Baylis-Hillman Reaction ........................................................................................................................................48 Beckmann Rearrangement ...................................................................................................................................50 Benzilic Acid Rearrangement ................................................................................................................................52 Benzoin and Retro-Benzoin Condensation ...........................................................................................................54 Bergman Cycloaromatization Reaction .................................................................................................................56 Biginelli Reaction...................................................................................................................................................58 Birch Reduction.....................................................................................................................................................60 Bischler-Napieralski Isoquinoline Synthesis ..........................................................................................................62 xlv TABLE OF CONTENTS SEARCH TEXT Brook Rearrangement...........................................................................................................................................64 Brown Hydroboration Reaction .............................................................................................................................66 Buchner Method of Ring Expansion (Buchner Reaction) ......................................................................................68 Buchwald-Hartwig Cross-Coupling .......................................................................................................................70 Burgess Dehydration Reaction..............................................................................................................................72 Cannizzaro Reaction.............................................................................................................................................74 Carroll Rearrangement (Kimel-Cope Rearrangement)..........................................................................................76 Castro-Stephens Coupling ....................................................................................................................................78 Chichibabin Amination Reaction (Chichibabin Reaction) ......................................................................................80 Chugaev Elimination Reaction (Xanthate Ester Pyrolysis)....................................................................................82 Ciamician-Dennstedt Rearrangement ...................................................................................................................84 Claisen Condensation/Claisen Reaction ...............................................................................................................86 Claisen Rearrangement ........................................................................................................................................88 Claisen-Ireland Rearrangement ............................................................................................................................90 Clemmensen Reduction........................................................................................................................................92 Combes Quinoline Synthesis ................................................................................................................................94 Cope Elimination / Cope Reaction ........................................................................................................................96 Cope Rearrangement............................................................................................................................................98 Corey-Bakshi-Shibata Reduction (CBS Reduction) ............................................................................................100 Corey-Chaykovsky Epoxidation and Cyclopropanation.......................................................................................102 Corey-Fuchs Alkyne Synthesis ...........................................................................................................................104 Corey-Kim Oxidation ...........................................................................................................................................106 Corey-Nicolaou Macrolactonization.....................................................................................................................108 Corey-Winter Olefination.....................................................................................................................................110 Cornforth Rearrangement ...................................................................................................................................112 Criegee Oxidation ...............................................................................................................................................114 Curtius Rearrangement.......................................................................................................................................116 Dakin Oxidation...................................................................................................................................................118 Dakin-West Reaction ..........................................................................................................................................120 Danheiser Benzannulation ..................................................................................................................................122 Danheiser Cyclopentene Annulation ...................................................................................................................124 Danishefsky’s Diene Cycloaddition .....................................................................................................................126 Darzens Glycidic Ester Condensation.................................................................................................................128 Davis' Oxaziridine Oxidations..............................................................................................................................130 xlvi TABLE OF CONTENTS SEARCH TEXT De Mayo Cycloaddition (Enone-Alkene [2+2] Photocycloaddition) .....................................................................132 Demjanov Rearrangement and Tiffeneau-Demjanov Rearrangement ................................................................134 Dess-Martin Oxidation.........................................................................................................................................136 Dieckmann Condensation ...................................................................................................................................138 Diels-Alder Cycloaddition ....................................................................................................................................140 Dienone-Phenol Rearrangement.........................................................................................................................142 Dimroth Rearrangement......................................................................................................................................144 Doering-LaFlamme Allene Synthesis ..................................................................................................................146 Dötz Benzannulation Reaction ............................................................................................................................148 Enders SAMP/RAMP Hydrazone Alkylation........................................................................................................150 Enyne Metathesis................................................................................................................................................152 Eschenmoser Methenylation ...............................................................................................................................154 Eschenmoser-Claisen Rearrangement ...............................................................................................................156 Eschenmoser-Tanabe Fragmentation.................................................................................................................158 Eschweiler-Clarke Methylation (Reductive Alkylation) ........................................................................................160 Evans Aldol Reaction ..........................................................................................................................................162 Favorskii and Homo-Favorskii Rearrangement ...................................................................................................164 Feist-Bénary Furan Synthesis .............................................................................................................................166 Ferrier Reaction/Rearrangement.........................................................................................................................168 Finkelstein Reaction............................................................................................................................................170 Fischer Indole Synthesis .....................................................................................................................................172 Fleming-Tamao Oxidation...................................................................................................................................174 Friedel-Crafts Acylation.......................................................................................................................................176 Friedel-Crafts Alkylation ......................................................................................................................................178 Fries-, Photo-Fries, and Anionic Ortho-Fries Rearrangement.............................................................................180 Gabriel Synthesis ................................................................................................................................................182 Gattermann and Gattermann-Koch Formylation .................................................................................................184 Glaser Coupling ..................................................................................................................................................186 Grignard Reaction ...............................................................................................................................................188 Grob Fragmentation ............................................................................................................................................190 Hajos-Parrish Reaction .......................................................................................................................................192 Hantzsch Dihydropyridine Synthesis...................................................................................................................194 Heck Reaction.....................................................................................................................................................196 Heine Reaction....................................................................................................................................................198 xlvii TABLE OF CONTENTS SEARCH TEXT Hell-Volhard-Zelinsky Reaction ...........................................................................................................................200 Henry Reaction ...................................................................................................................................................202 Hetero Diels-Alder Cycloaddition (HDA) .............................................................................................................204 Hofmann Elimination ...........................................................................................................................................206 Hofmann-Löffler-Freytag Reaction (Remote Functionalization) ..........................................................................208 Hofmann Rearrangement....................................................................................................................................210 Horner-Wadsworth-Emmons Olefination.............................................................................................................212 Horner-Wadsworth-Emmons Olefination – Still-Gennari Modification .................................................................214 Houben-Hoesch Reaction/Synthesis...................................................................................................................216 Hunsdiecker Reaction .........................................................................................................................................218 Jacobsen Hydrolytic Kinetic Resolution ..............................................................................................................220 Jacobsen-Katsuki Epoxidation ............................................................................................................................222 Japp-Klingemann Reaction .................................................................................................................................224 Johnson-Claisen Rearrangement........................................................................................................................226 Jones Oxidation/Oxidation of Alcohols by Chromium Reagents .........................................................................228 Julia-Lythgoe Olefination.....................................................................................................................................230 Kagan-Molander Samarium Diiodide-Mediated Coupling ...................................................................................232 Kahne Glycosidation ...........................................................................................................................................234 Keck Asymmetric Allylation .................................................................................................................................236 Keck Macrolactonization .....................................................................................................................................238 Keck Radical Allylation........................................................................................................................................240 Knoevenagel Condensation ................................................................................................................................242 Knorr Pyrrole Synthesis ......................................................................................................................................244 Koenigs-Knorr Glycosidation...............................................................................................................................246 Kolbe-Schmitt Reaction.......................................................................................................................................248 Kornblum Oxidation.............................................................................................................................................250 Krapcho Dealkoxycarbonylation (Krapcho reaction) ...........................................................................................252 Kröhnke Pyridine Synthesis ................................................................................................................................254 Kulinkovich Reaction...........................................................................................................................................256 Kumada Cross-Coupling .....................................................................................................................................258 Larock Indole Synthesis ......................................................................................................................................260 Ley Oxidation ......................................................................................................................................................262 Lieben Haloform Reaction...................................................................................................................................264 Lossen Rearrangement.......................................................................................................................................266 xlviii TABLE OF CONTENTS SEARCH TEXT Luche Reduction .................................................................................................................................................268 Madelung Indole Synthesis .................................................................................................................................270 Malonic Ester Synthesis......................................................................................................................................272 Mannich Reaction ...............................................................................................................................................274 McMurry Coupling ...............................................................................................................................................276 Meerwein Arylation..............................................................................................................................................278 Meerwein-Ponndorf-Verley Reduction ................................................................................................................280 Meisenheimer Rearrangement............................................................................................................................282 Meyer-Schuster and Rupe Rearrangement ........................................................................................................284 Michael Addition Reaction...................................................................................................................................286 Midland Alpine Borane Reduction .......................................................................................................................288 Minisci Reaction ..................................................................................................................................................290 Mislow-Evans Rearrangement ............................................................................................................................292 Mitsunobu Reaction ............................................................................................................................................294 Miyaura Boration .................................................................................................................................................296 Mukaiyama Aldol Reaction..................................................................................................................................298 Myers Asymmetric Alkylation ..............................................................................................................................300 Nagata Hydrocyanation.......................................................................................................................................302 Nazarov Cyclization ............................................................................................................................................304 Neber Rearrangement ........................................................................................................................................306 Nef Reaction .......................................................................................................................................................308 Negishi Cross-Coupling ......................................................................................................................................310 Nenitzescu Indole Synthesis ...............................................................................................................................312 Nicholas Reaction ...............................................................................................................................................314 Noyori Asymmetric Hydrogenation......................................................................................................................316 Nozaki-Hiyama-Kishi Reaction............................................................................................................................318 Oppenauer Oxidation ..........................................................................................................................................320 Overman Rearrangement ...................................................................................................................................322 Oxy-Cope Rearrangement and Anionic Oxy-Cope Rearrangement....................................................................324 Paal-Knorr Furan Synthesis ................................................................................................................................326 Paal-Knorr Pyrrole Synthesis ..............................................................................................................................328 Passerini Multicomponent Reaction ....................................................................................................................330 Paterno-Büchi Reaction ......................................................................................................................................332 Pauson-Khand Reaction .....................................................................................................................................334 xlix TABLE OF CONTENTS SEARCH TEXT Payne Rearrangement ........................................................................................................................................336 Perkin Reaction...................................................................................................................................................338 Petasis Boronic Acid-Mannich Reaction .............................................................................................................340 Petasis-Ferrier Rearrangement...........................................................................................................................342 Peterson Olefination............................................................................................................................................344 Pfitzner-Moffatt Oxidation....................................................................................................................................346 Pictet-Spengler Tetrahydroisoquinoline Synthesis ..............................................................................................348 Pinacol and Semipinacol Rearrangement ...........................................................................................................350 Pinner Reaction...................................................................................................................................................352 Pinnick Oxidation ................................................................................................................................................354 Polonovski Reaction............................................................................................................................................356 Pomeranz-Fritsch Reaction.................................................................................................................................358 Prévost Reaction.................................................................................................................................................360 Prilezhaev Reaction ............................................................................................................................................362 Prins Reaction.....................................................................................................................................................364 Prins-Pinacol Rearrangement .............................................................................................................................366 Pummerer Rearrangement .................................................................................................................................368 Quasi-Favorskii Rearrangement .........................................................................................................................370 Ramberg-Bäcklund Rearrangement....................................................................................................................372 Reformatsky Reaction.........................................................................................................................................374 Regitz Diazo Transfer .........................................................................................................................................376 Reimer-Tiemann Reaction ..................................................................................................................................378 Riley Selenium Dioxide Oxidation .......................................................................................................................380 Ritter Reaction ....................................................................................................................................................382 Robinson Annulation ...........................................................................................................................................384 Roush Asymmetric Allylation...............................................................................................................................386 Rubottom Oxidation ............................................................................................................................................388 Saegusa Oxidation..............................................................................................................................................390 Sakurai Allylation.................................................................................................................................................392 Sandmeyer Reaction...........................................................................................................................................394 Schmidt Reaction ................................................................................................................................................396 Schotten-Baumann Reaction ..............................................................................................................................398 Schwartz Hydrozirconation .................................................................................................................................400 Seyferth-Gilbert Homologation ............................................................................................................................402 l TABLE OF CONTENTS SEARCH TEXT Sharpless Asymmetric Aminohydroxylation ........................................................................................................404 Sharpless Asymmetric Dihydroxylation ...............................................................................................................406 Sharpless Asymmetric Epoxidation.....................................................................................................................408 Shi Asymmetric Epoxidation ...............................................................................................................................410 Simmons-Smith Cyclopropanation ......................................................................................................................412 Skraup and Doebner-Miller Quinoline Synthesis.................................................................................................414 Smiles Rearrangement .......................................................................................................................................416 Smith-Tietze Multicomponent Dithiane Linchpin Coupling ..................................................................................418 Snieckus Directed Ortho Metalation....................................................................................................................420 Sommelet-Hauser Rearrangement .....................................................................................................................422 Sonogashira Cross-Coupling ..............................................................................................................................424 Staudinger Ketene Cycloaddition ........................................................................................................................426 Staudinger Reaction............................................................................................................................................428 Stephen Aldehyde Synthesis (Stephen Reduction).............................................................................................430 Stetter Reaction ..................................................................................................................................................432 Stevens Rearrangement .....................................................................................................................................434 Stille Carbonylative Cross-Coupling....................................................................................................................436 Stille Cross-Coupling (Migita-Kosugi-Stille Coupling)..........................................................................................438 Stille-Kelly Coupling ............................................................................................................................................440 Stobbe Condensation..........................................................................................................................................442 Stork Enamine Synthesis ....................................................................................................................................444 Strecker Reaction................................................................................................................................................446 Suzuki Cross-Coupling (Suzuki-Miyaura Cross-Coupling) ..................................................................................448 Swern Oxidation..................................................................................................................................................450 Takai-Utimoto Olefination (Takai Reaction) ........................................................................................................452 Tebbe Olefination/Petasis-Tebbe Olefination......................................................................................................454 Tishchenko Reaction...........................................................................................................................................456 Tsuji-Trost Reaction/Allylation.............................................................................................................................458 Tsuji-Wilkinson Decarbonylation Reaction ..........................................................................................................460 Ugi Multicomponent Reaction .............................................................................................................................462 Ullmann Biaryl Ether and Biaryl Amine Synthesis/Condensation ........................................................................464 Ullmann Reaction/Coupling/Biaryl Synthesis ......................................................................................................466 Vilsmeier-Haack Formylation ..............................................................................................................................468 Vinylcyclopropane-Cyclopentene Rearrangement ..............................................................................................470 li TABLE OF CONTENTS SEARCH TEXT von Pechman Reaction .......................................................................................................................................472 Wacker Oxidation................................................................................................................................................474 Wagner-Meerwein Rearrangement .....................................................................................................................476 Weinreb Ketone Synthesis ..................................................................................................................................478 Wharton Fragmentation ......................................................................................................................................480 Wharton Olefin Synthesis (Wharton Transposition) ............................................................................................482 Williamson Ether Synthesis.................................................................................................................................484 Wittig Reaction ....................................................................................................................................................486 Wittig Reaction - Schlosser Modification .............................................................................................................488 Wittig-[1,2]- and [2,3]-Rearrangement.................................................................................................................490 Wohl-Ziegler Bromination....................................................................................................................................492 Wolff Rearrangement ..........................................................................................................................................494 Wolff-Kishner Reduction .....................................................................................................................................496 Wurtz Coupling....................................................................................................................................................498 Yamaguchi Macrolactonization ...........................................................................................................................500 lii TABLE OF CONTENTS VII. PREVIOUS REACTION NEXT REACTION SEARCH TEXT NAMED ORGANIC REACTIONS IN ALPHABETICAL ORDER 2 TABLE OF CONTENTS PREVIOUS REACTION NEXT REACTION SEARCH TEXT ACETOACETIC ESTER SYNTHESIS (References are on page 531) Importance: 1-4 5-9 10-19 [Seminal Publications ; Reviews ; Modifications & Improvements ] The preparation of ketones via the C-alkylation of esters of 3-oxobutanoic acid (acetoacetic esters) is called the acetoacetic ester synthesis. Acetoacetic esters can be deprotonated at either the C2 or at both the C2 and C4 carbons, depending on the amount of base used. The C-H bonds on the C2 carbon atom are activated by the electron-withdrawing effect of the two neighboring carbonyl groups. These protons are fairly acidic (pKa ~11 for C2 and pKa ~24 for C4), so the C2 position is deprotonated first in the presence of one equivalent of base (sodium alkoxide, LDA, NaHMDS or LiHMDS, etc.). The resulting anion can be trapped with various alkylating agents. A second alkylation at C2 is also possible with another equivalent of base and alkylating agent. When an acetoacetic 13-15,18,19 When an ester is subjected to excess base, the corresponding dianion (extended enolate) is formed. electrophile (e.g., alkyl halide) is added to the dianion, alkylation occurs first at the most nucleophilic (reactive) C4 position. The resulting alkylated acetoacetic ester derivatives can be subjected to two types of hydrolytic cleavage, depending on the conditions: 1) dilute acid hydrolyzes the ester group, and the resulting β-keto acid undergoes decarboxylation to give a ketone (mono- or disubstituted acetone derivative); 2) aqueous base induces a retroClaisen reaction to afford acids after protonation. The hydrolysis by dilute acid is most commonly used, since the reaction mixture is not contaminated with by-products derived from ketonic scission. More recently the use of the Krapcho decarboxylation allows neutral decarboxylation conditions.11,12 As with malonic ester, monoalkyl derivatives of acetoacetic ester undergo a base-catalyzed coupling reaction in the presence of iodine. Hydrolysis and decarboxylation of the coupled products produce γ-diketones. The starting acetoacetic esters are most often obtained via the Claisen condensation of the corresponding esters, but other methods are also available for their 5,8 preparation. O 4 3 O O 2 O O acetoacetic ester 1. NaOR1 / I2 O R O γ-Diketone OR 1 O 1. H3O+ 2. heat (-CO2) O 3 R R C2 dialkylated acetoacetic ester R2 OR1 1. H3O+ 2. heat (-CO2) O O R2 R2 C4 monoalkylated acetoacetic ester dianion OR1 2 1. H3O+ 2. heat (-CO2) 2. H3O+ 3. heat (-CO2) 2 R2 X O R2 O O O R3 X R2 C2 monoalkylated acetoacetic ester enolate base (excess) base (1 equiv) OR1 OR1 OR1 1 O R2 X base (1 equiv) R3 Disubstituted acetone derivative Monosubstituted acetone derivative R1 = 1°, 2° or 3° alkyl, aryl; R2 = 1° or 2° alkyl, allyl, benzyl; R3 = 1° or 2° alkyl, allyl, benzyl; base: NaH, NaOR1,LiHMDS, NaHMDS Mechanism: 3,20 The first step is the deprotonation of acetoacetic ester at the C2 position with one equivalent of base. The resulting enolate is nucleophilic and reacts with the electrophilic alkyl halide in an SN2 reaction to afford the C2 substituted acetoacetic ester, which can be isolated. The ester is hydrolyzed by treatment with aqueous acid to the corresponding β-keto acid, which is thermally unstable and undergoes decarboxylation via a six-membered transition state. Alkylation: O O O - [HBase] OR H O O OR1 enolate Base R2 O SN2 OR1 Hydrolysis: O O 1 -X X O OR1 R2 C2 alkylated acetoacetic ester Decarboxylation: O 1.H3O OR1 R2 C2 alkylated acetoacetic ester 2. P.T. H R2 R2 O OH O O OH R1 - HOR1 -H R2 O H O β-keto acid R2 - CO2 H tautomerization O H enol O Ketone TABLE OF CONTENTS PREVIOUS REACTION NEXT REACTION 3 SEARCH TEXT ACETOACETIC ESTER SYNTHESIS Synthetic Applications: In the laboratory of H. Hiemstra, the synthesis of the bicyclo[2.1.1]hexane substructure of solanoeclepin A was undertaken utilizing the intramolecular photochemical dioxenone-alkene [2+2] cycloaddition reaction.21 The dioxenone precursor was prepared from the commercially available tert-butyl acetoacetate using the acetoacetic ester synthesis. When this dioxenone precursor was subjected to irradiation at 300 nm, complete conversion of the starting material was observed after about 4h, and the expected cycloadduct was formed in acceptable yield. O Br O O KOtBu, NaI (cat.) O O O THF, 0 °C to reflux, 16h O Ac2O, acetone -10 °C to r.t.,16h O 36% for 2 steps O hν MeCN/acetone (9:1 v/v) O O O r.t., 3.5h OH 47% for 2 steps Future work CO2H H HO LiAlH4, r.t.,THF, 10 min O H O OH bicyclo [2.1.1]hexane skeleton O HO O O Solanoeclepin A R. Neier et al. synthesized substituted 2-hydroxy-3-acetylfurans by the alkylation of tert-butylacetoacetate with an α22 haloketone, followed by treatment of the intermediate with trifluoroacetic acid. When furans are prepared from βketoesters and α-haloketones, the reaction is known as the Feist-Bénary reaction. A second alkylation of the C2 alkylated intermediate with various bromoalkanes yielded 2,2-disubstituted products, which upon treatment with TFA, provided access to trisubstituted furans. O O 1. NaH (1.1 equiv), THF 30 min, 0 °C then O Br 2 O O (1.1 equiv) t-butylacetoacetate 2 O O O O O O 0 °C, 2h then r.t.,12h 92% O H DCM/THF (10:1) r.t., 12h O O O TFA, r.t., 1h or O O 2-Hydroxy-3-acetylfuran derivative 87% M. Nakada and co-workers developed a novel synthesis of tetrahydrofuran and tetrahydropyran derivatives by reacting dianions of acetoacetic esters with epibromohydrin derivatives.23 The selective formation of the tetrahydrofuran derivatives was achieved by the use of LiClO4 as an additive. O O O + OEt OH H Br H BnO LiClO4 (2.0 equiv) -60 °C to -40 °C to r.t. 5h; 82% OBn Me dianion H Me H O OH BnO + O CO2Et Me CO2Et Tetrahydrofuran : Tetrahydropyran = 135 : 1 A synthetic strategy was developed for the typical core structure of the Stemona alkaloids in the laboratory of C.H. 24 Heathcock. The precursor for the 1-azabicyclo[5.3.0]decane ring system was prepared via the successive double alkylation of the dianion of ethyl acetoacetate. EtO O O 1. LiI, DME, heat O OLi O O O OLi i-Pr 1.3h, 0 °C 87% O I EtO2C O Cl 2. NaOMe, MeOH 3. set pH 1 4. toluene, heat 47% overall O steps H C N O 1-Azabicyclo[5.3.0]decane system 4 TABLE OF CONTENTS PREVIOUS REACTION NEXT REACTION SEARCH TEXT ACYLOIN CONDENSATION (References are on page 531) Importance: [Seminal Publications 1-4 ; Reviews 5-9 10-22 ; Modifications & Improvements ] The acyloin condensation affords acyloins (α-hydroxy ketones) by treating aliphatic esters with molten, highly dispersed sodium in hot xylene.8 The resulting disodium acyloin derivatives are acidified to liberate the corresponding acyloins, which are valuable synthetic intermediates. Aliphatic monoesters give symmetrical compounds, while diesters lead to cyclic acyloins. The intramolecular acyloin condensation is one of the best ways of closing rings of 10 6 members or more (up to 34 membered rings were synthesized). For the preparation of aromatic acyloins (R=Ar), the benzoin condensation between two aromatic aldehydes is applied. The acyloin condensation is performed in an inert atmosphere, since the acyloins and their anions are readily oxidized. For small rings (ring size: 4-6), yields are greatly improved in the presence of TMSCl and by the use of ultrasound.11,13 The addition of TMSCl increases the scope of this reaction by preventing base-catalyzed side reactions such as β-elimination, Claisen or Dieckmann condensations. The resulting bis-silyloxyalkenes are either isolated or converted into acyloins by simple hydrolysis or alcoholysis. O O R O R' TMSO molten sodium metal + R R' O TMSCl R xylene, reflux H+ / H2O OTMS O R HO R R H Acyloin bis-silyloxyalkene Mechanism: 5,6,23 There are currently two proposed mechanisms for the acyloin ester condensation reaction. In mechanism A the sodium reacts with the ester in a single electron transfer (SET) process to give a radical anion species, which can dimerize to a dialkoxy dianion.5,6 Elimination of two alkoxide anions gives a diketone. Further reduction (electron transfer from the sodium metal to the diketone) leads to a new dianion, which upon acidic work-up yields an enediol 23 that tautomerizes to an acyloin. In mechanism B an epoxide intermediate is proposed. Mechanism A: 2 R1 OR2 R1 2 Na OR2 R 2O R1 O dimerization + reduction O R1 OR2 O O Na Na Na R1 2 H 3O R1 reduction - 2 OR2 R1 R1 O diketone OH H OH O Na 2 Na O OR2 R1 O Na tautomerization R1 R1 acidic work-up R1 O Acyloin OH enediol O Na R1 Mechanism B: O R' O O R 1 O R' Na O reduction 3 R O OR' R 3 R R'O 1 O R 1 2 O 3 reduction 3 R R R O Na 1 2 O OR' Na R 1 O - NaOR' 3 R O diketone O 2 2 R O Na OH 2 H 3O acidic work-up 3 R 1 R 2 O Na Na O R R OR' OR' epoxide intermediate 2 Na OR' Na 1 Na O 3 R Na reduction O Na 2 2 O 2 2 R' 3 R Na OR' - NaOR' 1 O 1 R OH enediol tautomerization H R OH 3 1 O Acyloin R R TABLE OF CONTENTS PREVIOUS REACTION NEXT REACTION 5 SEARCH TEXT ACYLOIN CONDENSATION Synthetic Applications: J. Salaün and co-workers studied the ultrasound-promoted acyloin condensation and cyclization of carboxylic esters.13 They found that the acyloin coupling of 1,4-, 1,5-, and 1,6-diesters afforded 4-, 5- and 6-membered ring products. The cyclization of β-chloroesters to 3-membered ring products in the presence of TMSCl, which previously required highly dispersed sodium, was simplified and improved under sonochemical activation. 1 Me COOEt 2 3 2 1 COOEt 1 Me OTMS COOMe 2 4 5 3 1 3 COOMe 2 OTMS 3 Na / TMSCl 1 2 )))), 2 h Me H OTMS OMe Me 85% OTMS 1 1 )))), 1.75 h OTMS Br 4 85% 2 OTMS 2 Na / TMSCl 1 3 3 )))), 1.75 h 5 4 3 Na / TMSCl COOEt 2 Cl )))), 2.5 h 80% COOEt 4 3 Me Na / TMSCl OMe Me 84% The diterpene alkaloids of the Anopterus species, of which anopterine (R=tigloyl) is a major constituent, are associated with a high level of antitumor activity. All of these alkaloids contain the tricyclo[3.3.21,4.0]decane substructure. S. Sieburth et al. utilized the acyloin condensation as a key step in the short construction of this tricyclic framework.24 7 MeO2C H3C 6 MOMO TMSO H 5 7 4 2 H Na / TMSCl OMOM 3 CH3 CO2Me H3C PhMe, reflux 1 90% 1 H HF, MeCN OH H3C H H3C 4 5 MOMO OMOM 3 H 2 H 2 1 CH3 7 OTMS 4 3 OTMS HO N Future work CH3 6 MOMO CH3 HO OMOM OMOM 5 H 6 H OTMS OR R = tigloyl RO O H MOMO Anopterine D.J. Burnell et al. synthesized bicyclic diketones by Lewis acid-promoted geminal acylation involving cyclic acyloins tethered to an acetal. The required bis-silyloxyalkenes were prepared by using the standard acyloin condensation conditions.25 1 2 O H3C 9 O 8 7 CO2Et 3 6 5 CO2Et 4 TMSO Na / TMSCl toluene, reflux 82% O H3C 9 O 1 6 3 8 7 OTMS 4 5 2 1. BF3.OEt2 (2 equiv) DCM, -78 °C 2. warm-up to r.t. then TFA (10 equiv) 36% for 2 steps O 9 4 H3C O 7 6 8 5 1 3 2 Bicyclic diketone 6 TABLE OF CONTENTS PREVIOUS REACTION NEXT REACTION SEARCH TEXT ALDER (ENE) REACTION (HYDRO-ALLYL ADDITION) (References are on page 532) Importance: 1-6 7-33 [Seminal Publications ; Reviews ; Theoretical Studies 34-44 ] In 1943, K. Alder systematically studied reactions that involved the activation of an allylic C-H bond and the allylic transposition of the C=C bond of readily available alkenes.4-6 This reaction is known as the ene reaction. Formally it is the addition of alkenes to double bonds (C=C or C=O), and it is one of the simplest ways to form C-C bonds. The ene reaction of an olefin bearing an allylic hydrogen atom is called “carba-ene reaction”. For the reaction to proceed without a catalyst, the alkene must have an electron-withdrawing (EWG) substituent. This electrophilic compound is called the enophile. The ene reaction has a vast number of variants in terms of the enophile used.7-9,11,12,45,14-16,46,1820,24,47,27-30 Olefins are relatively unreactive as enophiles, whereas acetylenes are more enophilic. For example, under high pressure acetylene reacts with a variety of simple alkenes to form 1,4-dienes. When the enophile is a carbonyl compound, the ene reaction leads exclusively to the corresponding alcohol instead of the ether (carbonyl-ene reaction). However, thiocarbonyl compounds react mainly to give allylic sulfides rather than homoallylic thiols. Schiff bases derived from aldehydes afford homoallylic amines (aza-ene, imino-ene or hetero-ene reaction).19 Metallo-ene reactions with Pd, Pt, and Ni-catalyzed versions have been successful in intramolecular systems. The ene reaction is compatible with a variety of functional groups that can be appended to the ene and enophile. The ene reaction can be highly stereoselective and by adding Lewis acids (RAlX2, Sc(OTf)3, LiClO4, etc.), less reactive enophiles can also be used. The regioselectivity of the reaction is determined by the steric accessibility of the hydrogen. Usually primary hydrogens are abstracted faster than secondary hydrogens and tertiary hydrogens are abstracted last. Functionalization of the reacting components by introduction of a silyl, alkoxy, or amino group, thus changing the steric and electronic properties, affords more control over the regioselectivity of the reaction. + H ene X X ene reaction Y H tautomerization Y Z Z H ene enophile R1 R2 Mechanism: R1 R1 N R3 ; O ; X=Y : R2 R1 R3 R2 R4 S; R2 + X Y hetero ene reaction X Z H Y enophile Z: heteroatom 48-52,31 The ene reaction is mechanistically related to the better-known Diels-Alder reaction and is believed to