Main Advances in Domain Adaptation Theory

Advances in Domain Adaptation Theory

, , , ,
Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version.

Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm.
Year: 2019
Edition: 1
Publisher: ISTE Press
Language: english
Pages: 194
ISBN 13: 978-1-78548-236-6
File: PDF, 4.85 MB
Download (pdf, 4.85 MB)
Preview
 
You can write a book review and share your experiences. Other readers will always be interested in your opinion of the books you've read. Whether you've loved the book or not, if you give your honest and detailed thoughts then people will find new books that are right for them.